

Zixuan Huang

📞 (608) 733-8800 📩 zxhuang1698@gmail.com 🌐 zixuanh.com 💬 zixuan-huang

Education

University of Illinois Urbana-Champaign, PhD in Computer Science	2023 - 2025
Georgia Institute of Technology, PhD in Computer Science	2020 - 2023 (transferred to UIUC)
<ul style="list-style-type: none">• Advisor: James M. Rehg• Thesis: From Objects to Worlds: Scalable Learning of 3D Assets	
University of Wisconsin-Madison, M.Sc. in Computer Science	2018 - 2020
<ul style="list-style-type: none">• Advisor: Yin Li• Research topic: Self-supervised Learning of Object Parts	
University of Science and Technology of China, B.Eng., Information Security	2014 - 2018
<ul style="list-style-type: none">• Special Class for the Gifted Young• GPA: 3.87/4.30, Rank: 2/66	

Research and Work Experience

Meta Reality Labs, Research Scientist	June 2025 - Present
Interactive 3D World Generation	
<ul style="list-style-type: none">• Full-stack development on latent diffusion models that generate interactive and editable 3D worlds from text prompts• Built scalable data engines for training large 3D generators, significantly improving model performance• Shipped key features in AssetGen and contributed to Meta's publicly announced WorldGen as a core contributor	
UIUC/Georgia Tech, PhD Student Researcher	August 2020 - December 2025
Scalable Learning of 3D Objects and Scenes	
<ul style="list-style-type: none">• Led one research project on video foundation models for 3D world modeling• Led two research projects on self-supervised 3D learning without any 3D supervision• Led one research project on efficient single-view 3D reconstruction via feedforward modeling	
Stability AI, Research Scientist Intern	February 2024 - August 2024
Large-scale Single-image 3D Reconstructor with Efficient Inference	
<ul style="list-style-type: none">• Redesigned large reconstruction models across architecture, data, training pipeline, and loss function• Developed and open-sourced three ultra-fast SOTA 3D reconstruction models, earning 8.5k+ GitHub stars• Produced two research papers accepted to CVPR 2025 and one high-impact tech report	
Meta, FAIR, Research Scientist Intern	May 2023 - July 2023
High-resolution 3D Point Diffusion Model from Noisy Low-resolution Data	
<ul style="list-style-type: none">• Designed a 3D point diffusion denoiser robust to the change of resolution• Enabled continuous 3D surface generation despite training on noisy, low-resolution point clouds	
Google Research, Part-time Student Researcher	February 2022 - May 2022
Learning to Reconstruct 3D Objects in the Wild	
<ul style="list-style-type: none">• Trained a 3D object reconstructor from single images using multimodal language prior• Achieved 3D reconstruction on in-the-wild images without training on any 3D data	
Sensetime Research, Research Scientist Intern	February 2018 - Jun 2018
Monocular Depth Completion from Sparse Depth Maps	
<ul style="list-style-type: none">• Built a multi-scale depth completion model invariant to sparsity patterns in the input• Achieved SOTA on the KITTI depth completion benchmark and published at a premier venue	

Publications and Preprints

1. How Much 3D Do Video Foundation Models Encode?
Huang, Z.*, Li, X.*., Lv, Z., & Rehg, J. M. Arxiv Preprint
2. WorldGen: From Text to Traversable and Interactive 3D Worlds
Wang et al. [including **Huang, Z.** as a core contributor] Arxiv Preprint
3. Cue3D: Quantifying the Role of Image Cues in Single-Image 3D Generation
Li, X., Wang, Z., **Huang, Z.**, & Rehg, J. M. NeurIPS 2025 (Spotlight)
4. SPAR3D: Stable Point-Aware Reconstruction of 3D Objects from Single Images
Huang, Z., Boss, M., Vasishta, A., Rehg, J. M., & Jampani, V. CVPR 2025

5. SF3D: Stable Fast 3D Mesh Reconstruction with UV-unwrapping and Illumination Disentanglement
Boss, M., **Huang, Z.**, Vasishta, A., & Jampani, V. CVPR 2025
6. Symmetry Strikes Back: From Single-Image Symmetry Detection to 3D Generation
Li, X., **Huang, Z.**, Thai, A., & Rehg, J. M. CVPR 2025 (Highlight)
7. MEBench: A Novel Benchmark for Understanding Mutual Exclusivity Bias in Vision-Language Models
Thai, A., Stojanov, S., **Huang, Z.**, Boote, B., & Rehg, J. M. arXiv Preprint 2025
8. If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code Empowers Large Language Models to Serve as Intelligent Agents
Yang et al. [including **Huang, Z.**] ICLR Workshop 2024
9. TripoSR: Fast 3D Object Reconstruction from a Single Image
Tochilkin et al. [including **Huang, Z.**] arXiv Preprint 2024
10. PointInfinity: Resolution-Invariant Point Diffusion Models
Huang, Z., Johnson, J., Debnath, S., Rehg, J. M., & Wu, C. CVPR 2024
11. ZeroShape: Regression-based Zero-shot Shape Reconstruction
Huang, Z.*, Stojanov, S.*., Thai, A., Jampani, V., & Rehg, J. M. CVPR 2024
12. ShapeClipper: Scalable 3D Shape Learning from Single-View Images via Geometric and CLIP-based Consistency
Huang, Z., Jampani, V., Thai, A., Li, Y., Stojanov, S., & Rehg, J. M. CVPR 2023
13. Low-shot Object Learning with Mutual Exclusivity Bias
Thai, A., Humayun, A., Stojanov, S., **Huang, Z.**, Boote, B., & Rehg, J. M. NeurIPS 2023 (Datasets and Benchmarks)
14. Planes vs. Chairs: Category-guided 3D shape learning without any 3D cues
Huang, Z., Stojanov, S., Thai, A., Jampani, V., & Rehg, J. M. ECCV 2022
15. Learning Dense Object Descriptors from Multiple Views for Low-shot Category Generalization
Stojanov, S., Thai, A., **Huang, Z.**, & Rehg, J. M. NeurIPS 2022
16. The Surprising Positive Knowledge Transfer in Continual 3D Object Shape Reconstruction
Thai, A., Stojanov, S., **Huang, Z.**, & Rehg, J. M. 3DV 2021
17. Interpretable and Accurate Fine-grained Recognition via Region Grouping
Huang, Z., & Li, Y. CVPR 2020 (Oral)
18. HMS-Net: Hierarchical Multi-scale Sparsity-invariant Network for Sparse Depth Completion
Huang, Z., Fan, J., Cheng, S., Yi, S., Wang, X., & Li, H. IEEE Trans. on Image Processing, 2019

Selected Honors & Awards

- Member of **Doctoral Consortium at CVPR 2025** 2025
- **Google Gift Funding**: supports my research on 3D reconstruction 2022
- **UW-Madison CS Scholarship**: outstanding students admitted in Fall 2018 2018, 2019
- **USTC Outstanding Student Scholarship**: gold tier, top 4% of cohort 2017
- **Institute of Electronics of Chinese Academy of Sciences Scholarship**: top 5% of cohort 2016
- **Special Class for the Gifted Young**: 1 out of 43 young talented students selected nationalwise 2014

Professional Activities

Reviewing for:

- Computer Vision and Pattern Recognition (CVPR)
- European Conference on Computer Vision (ECCV)
- International Conference on Computer Vision (ICCV)
- Neural Information Processing Systems (NeurIPS)
- IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI)

Skills

- **Programming & Tools**: Python, C, MATLAB, C++, CUDA, Blender, OpenCV, SLURM
- **Machine Learning**: PyTorch, NumPy, scikit-learn, TensorFlow, LLM/VLMs
- **Leadership**: Mentored junior PhD students on research projects