

Motivation

Large-scale annotated data empowered the great success of learning-based method in 2D computer vision tasks.

However, 3D reconstruction from single images is still quite challenging

data at scale.

How can we learn 3D shape reconstruction in a more scalable way?

MCSV learning

> is more scalable

> enables data pooling to learn category-agnostic features

problem even harder to solve:

Can we better constrain the shape learning?

Planes vs. Chairs: Category-guided 3D shape learning without any 3D cues

Zixuan Huang¹, Stefan Stojanov¹, Anh Thai¹, Varun Jampani², James M. Rehg¹ ¹Georgia Institute of Technology, ²Google Research

Quantitative ablation and SOTA comparison on ShapeNet-13:

Methods	$F-Score@1.0\uparrow$	F-Score@5.0↑	$F-Score@10.0\uparrow$	CD↓
w/o category	0.1589	0.6261	0.8527	0.520
w/o \mathcal{L}_{metric}	0.1875	0.6864	0.8805	0.458
w/o \mathcal{L}_{cam}	0.1837	0.6741	0.8758	0.463
w/o \mathcal{L}_{gan}	0.1846	0.6437	0.8422	0.532
Ours	0.2005	0.7168	0.8949	0.430
SDF-SRN	0.1606	0.5441	0.7584	0.682

Qualitative ablation and SOTA comparison on ShapeNet-13:

Results on ShapeNet-55:

Input

Limitation:

on real-world images with many categories

Code available

Results

Results on Pascal3D+:

 \succ training instability due to the adversarial regularization, particularly