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Figure 1. We present a resolution-invariant point cloud diffusion model that trains at low-resolution (down to 64 points), but generates

high-resolution point clouds (up to 131k points). This test-time resolution scaling improves our generation quality. We visualize our

high-resolution 131k point clouds by converting them to a continuous surface.

Abstract

We present PointInfinity, an efficient family of point cloud

diffusion models. Our core idea is to use a transformer-

based architecture with a fixed-size, resolution-invariant la-

tent representation. This enables efficient training with

low-resolution point clouds, while allowing high-resolution

point clouds to be generated during inference. More impor-

tantly, we show that scaling the test-time resolution beyond

the training resolution improves the fidelity of generated

point clouds and surfaces. We analyze this phenomenon

*Work done at Meta.

and draw a link to classifier-free guidance commonly used

in diffusion models, demonstrating that both allow trading

off fidelity and variability during inference. Experiments on

CO3D show that PointInfinity can efficiently generate high-

resolution point clouds (up to 131k points, 31× more than

Point-E) with state-of-the-art quality.

1. Introduction

Recent years have witnessed remarkable success in

diffusion-based 2D image generation [6, 38, 39], character-

ized by unprecedented visual quality and diversity in gen-



erated images. In contrast, diffusion-based 3D point cloud

generation methods have lagged behind, lacking the real-

ism and diversity of their 2D image counterparts. We ar-

gue that a central challenge is the substantial size of typ-

ical point clouds: common point cloud datasets [11, 50]

typically contain point clouds at the resolution of 100K or

more. This leads to prohibitive computational costs for gen-

erative modeling due to the quadratic complexity of trans-

formers with respect to the number of input points. Con-

sequently, state-of-the-art models are severely limited by

computational constraints, often restricted to a low resolu-

tion of 2048 or 4096 points [32, 36, 46, 57, 59].

In this paper, we propose an efficient point cloud diffu-

sion model that is efficient to train and easily scales to high

resolution outputs. Our main idea is to design a class of ar-

chitectures with fixed-sized, resolution-invariant latent rep-

resentations. We show how to efficiently train these models

with low resolution supervision, while enabling the genera-

tion of high-resolution point clouds during inference.

Our intuition comes from the observation that different

point clouds of an object can be seen as different samples

from a shared continuous 3D surface. As such, a generative

model that is trained to model multiple low-resolution sam-

ples from a surface ought to learn a representation from the

underlying surface, allowing it to generate high-resolution

samples after training.

To encode this intuition into model design, we propose

to decouple the representation of the underlying surface and

the representation for point cloud generation. The former is

a constant-sized memory for modeling the underlying sur-

face. The latter is of variable size, depending on point cloud

resolution. We design lightweight read and write modules

for communicating between the two representations. The

bulk of our model’s computation is spent on modeling the

underlying surface.

Our experiments demonstrate a high level of resolution

invariance with our model1. Trained at a low resolution of

1,024, the model can generate up to 131k points during in-

ference with state-of-the-art quality, as shown in Fig. 1. In-

terestingly, we observe that using a higher resolution than

training in fact leads to slightly higher surface fidelity. We

analyze this intriguing phenomenon and draw connection to

classifier-free guidance. We emphasize that our generation

output is >30× higher resolution than those from Point-

E [36]. We hope that this is a meaningful step towards scal-

able generation of high-quality 3D outputs.

2. Related Work

Single-view 3D reconstruction aims to recover the 3D

shape given an input image depicting an object or a scene.

1The resolution-invariance discussed in this paper refers to the property

we observe empirically as in experiments, instead of a strict mathematical

invariance

Recent works can be categorized based on the 3D repre-

sentation they choose. Commonly used representation in-

cludes point clouds [8], voxels [5, 12, 54], meshes [13, 49]

and implicit representations [33, 55]. Results of these works

are usually demonstrated on synthetic datasets and/or small-

scale real-world datasets such as Pix3D [45]. More re-

cently, MCC [51] proposes to predict occupancy using a

transformer-based model. It shows great zero-shot gener-

alization performance, but it fails to model fine surface de-

tails due to its distance-based thresholding [51]. Our formu-

lation avoids this issue and generates more accurate point

clouds. Also note that most prior works are regression-

based, which leads to deterministic reconstruction, ignoring

the multi-modal nature of the reconstruction problem. Our

diffusion-based method generates diverse outputs.

Generative 3D modeling learns the distribution of 3D

assets, instead of a deterministic mapping. Early ap-

proaches in this direction often consider modeling 3D gen-

eration with GAN [1, 2, 9, 18, 27, 43, 47, 52], normaliz-

ing flow [24, 26, 56] or VAE [10, 34, 53]. More recently,

with the success of 2D diffusion models [6, 38], diffusion-

based 3D generative models [3, 4, 17, 28, 30, 35, 42, 44, 58]

have been proposed and achieve promising generation qual-

ity. Among 3D diffusion models, point cloud diffusion

models [32, 36, 46, 57, 59] are the most relevant ones

to our work. We share the same diffusion framework

with these approaches, but propose a novel resolution-

invariant method that is both accurate and efficient. We

also goes beyond noise-free synthetic datasets and demon-

strate success on more challenging real-world datasets such

as CO3D [37].

Transformers are widely used in various domains in

computer vision [7, 29]. We extend transformers to use a

fixed-sized latent representation for a resolution-invariant

modeling of 3D point clouds. The resulting family of ar-

chitectures includes architectures used in some prior works

in recognition and 2D generation [19–21], that were origi-

nally designed for joint modeling of multiple modalities.

3. Background

Problem Definition. The problem studied in this work

is RGB-D conditioned point cloud generation, similar to

MCC [51]. Formally, we denote RGB-D images as I ∈
R

4×h×w and point clouds as p ∈ R
n×6, with 3 channels

for RGB and 3 for XYZ coordinates. The point clouds we

consider in this work can come from various data sources,

including the noisy ones from multi-view reconstruction al-

gorithms [37].
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(b) Denoiser Architecture

Figure 2. Conditional 3D Point Cloud Generation with PointInfinity. (a): At the core of PointInfinity is a resolution-invariant condi-

tional denoising model ϵθ . It uses low-resolution point clouds for training and generates high-resolution point clouds at test time. (b): The

main idea is a “Two-Stream” transformer design that decouples a fixed-sized latent representation z for capturing the underlying 3D shape

and a variable-sized data representation x for modeling of the point could space. ‘Read’ and ‘write’ cross-attention modules are used to

communicate between the two streams of processing. Note that most of the computation happens in the latent stream for modeling the

underlying shape. This makes it less susceptible to the effects of point cloud resolution variations.

Denoising Diffusion Probabilistic Model (DDPM). Our

method is based on the DDPM [15], which consists of two

processes: 1) the diffusion process which destroys data pat-

tern by adding noise, and 2) the denoising process where the

model learns to denoise. At timestep t ∈ [0, T ], the diffu-

sion process blends Gaussian noise ϵ ∼ N (0, I) with data

sample p0 as

pt =
√
ᾱtp0 +

√
1− ᾱtϵ, (1)

where ᾱt denotes the noise schedule. The denoiser ϵθ(pt, t)
then learns to recover the noise from pt with loss

Lsimple(θ) = Et,p
0
,ϵ∥ϵ− ϵθ(pt, t)∥22. (2)

During inference, we use the stochastic sampler proposed

in Karras et al. [23] to generate samples.

Classifier-Free Guidance. Conditional diffusion models

often use classifier-free guidance [14] to boost the sample

quality at the cost of sample diversity. During training, the

condition of the model is dropped with some probability

and the denoiser will learn to denoise both with and without

condition. At test time, we linearly combine the conditional

denoiser with unconditional denoiser as follows

ϵ̃θ(pt, t|c) = (1 + ω)ϵθ(pt, t|c)− ωϵθ(pt, t), (3)

where ω is the classifier-free guidance scale and ϵ̃θ(pt, t|c)
is the new denoiser output.

Transformer-based [48] point diffusion models have

been widely used in prior works [36], due to its permuta-

tion equivariant nature. Namely, when we permute the in-

put noisy point cloud, transformers guarantee that the out-

put noise predictions are also permuted in the same way.

However, as we will show in §5, vanilla transformers are

not resolution-invariant — Testing with a different resolu-

tion from training significantly reduces accuracy. Further-

more, they scale quadratically w.r.t. to resolution, making

them unamenable for high-resolution settings. To gener-

ate denser outputs, Point-E [36] trains a separate upsampler

for upsampling points from 1024 to 4096. In the next sec-

tion, we will show how to scale the resolution to up to 131k

points without a separate upsampler.

4. Point Cloud Generation with PointInfinity

The main idea of PointInfinity is a resolution-invariant

model, with which we train the model efficiently using

low-resolution point clouds, while still supporting point

cloud generation at a higher resolution. Fig. 2 illustrates

an overview of the system.

4.1. Model

To achieve resolution invariance, we propose to parameter-

ize ϵθ(pt, t|c) to be a 2-stream transformer-based model.

The model first linearly projects noisy input points pt into

representations xt. Then a stack of L two-stream blocks

process xt and finally predicts ϵ̂.

The Two-Stream Block. The main idea of our two-

stream block is to introduce a fixed-sized latent represen-

tation z for capturing the underlying 3D shape and a la-

tent processing stream for modeling it. Concretely, the ℓ-th

block takes in two inputs x
ℓ ∈ R

n×d, zℓ ∈ R
m×d and

outputs x(ℓ+1) ∈ R
n×d, z(ℓ+1) ∈ R

m×d. At the first two-

stream block (ℓ = 0), the data-stream x
0 is fed with the noisy

point cloud xt. The latent input of the first block z
0 is a



learned embedding zinit cancatenated with conditioning to-

kens c in the token dimension.

Within each two-stream block, we will first use a read

cross attention block to cross attend information from data

representation x
ℓ into the latent representation z

ℓ,

z̃
ℓ := CrossAttn(zℓ,xℓ,xℓ), (4)

where CrossAttn(Q,K, V ) denotes a cross attention block

with query Q, key K, and value V . Then we use H layers

of transformer blocks to model the latent representation

z
(ℓ+1) := Transformer(z̃ℓ) (5)

Finally, we will use a write cross attention block to write

the latent representation back into the data stream through

x
(ℓ+1) := CrossAttn(xℓ, z(ℓ+1), z(ℓ+1)) (6)

Fig. 2b illustrates our design. Note that the latent stream

processes tokens that are fixed-sized, while the data stream

processes variable-sized tokens projected from noisy point

cloud data. Since the bulk of the computation is spent on

the fixed-sized latent stream, the processing is less affected

by the resolution of the data stream. Also note that with this

design, the computation only grows linearly with the size of

x, instead of growing quadratically.

4.2. Implementation Details

Architecture Details. We use L = 6 two-stream blocks

in our denoiser, each includes H = 4 transformer blocks.

For conditioning, we use the MCC encoder [51] to encode

the RGB-D image into 197 tokens, and we use the time step

embedding in [36] to encode time step t as a vector. Con-

catenating these two along the token dimension, we obtain

the condition tokens c consisting of 198 vectors of dimen-

sion d = 256. zinit consists of 256 tokens, so the latent

representation z
ℓ has m = 454 tokens in total. The default

training resolution ntrain we use is 1024, while the test-time

resolution ntest we consider in the experiments varies from

1024 to 131,072.

Training Details. We train our model with the Adam [25]

optimizer. We use a learning rate of 1.25 × 10−4, a batch

size of 64 and momentum parameters of (0.9, 0.95). We use

a weight decay of 0.01 and train our model for 150k iter-

ations on CO3D. For diffusion parameters, we use a total

of 1024 timesteps with the cosine noise scheduler. We also

use latent self-conditioning of probability 0.9 during train-

ing following [19].

Surface Extraction. Because our model is able to gen-

erate high-resolution point clouds, it is possible to directly

extract surface from the generated point clouds. To do so,

we first create a set of 3D grid points in the space. For each

point, we find the neighbor points in the point cloud and

compute the mean distance to these points. We then use the

marching cube [31] to extract the surface by thresholding

the mean distance field.

5. Experiments

5.1. Dataset

CO3D. We use CO3D-v2 [37] as our main dataset for ex-

periments. CO3D-v2 is a large real-world collection of 3D

objects in the wild, that consists of ∼37k objects from 51

object categories. The point cloud of each object is pro-

duced by COLMAP [40, 41] from the original video cap-

ture. Despite the noisy nature of this process, we show that

our model produces faithful 3D generation results.

5.2. Evaluation Protocol

Metrics. Following [16, 33, 51], the main evaluation met-

ric we use for RGB-D conditioned shape generation is

Chamfer Distance (CD). Given the predicted point cloud

S1 and the groundtruth point cloud S2, CD is defined as an

average of accuracy and completeness:

d(S1, S2) =
1

2|S1|

∑

x∈S1

min
y∈S2

∥x−y∥2+
1

2|S2|

∑

y∈S2

min
x∈S1

∥x−y∥2

(7)

Another metric we consider is F-score, which measures

the alignment between the predicted point cloud and the

groundtruth under a classification framing. Intuitively, it

can be understood as the percentage of surface that is cor-

rectly reconstructed. In our work, we use a threshold of 0.2

for all experiments — if the distance between a predicted

point and a groundtruth point is less than 0.2, we consider

it as a correct match.

In addition to shape evaluation metrics, we also consider

peak signal-to-noise ratio (PSNR) for texture evaluation.

Protocol. Note that point clouds with more points might

be trivially advantageous in completeness, and thus Cham-

fer Distance or F-score. Consequently, in this paper we

compute CD not only on the traditional full point cloud set-

ting (denoted ‘CD@full’), but also the subsampled setting

(1024 points by default; denoted ‘CD@1k’) to ensure all

methods are compared under the same number of points.

Intuitively, ‘CD@1k’ measures the ‘surface quality’ under

a certain resolution.2 In addition, all objects are standard-

ized such that they have zero mean and unit scale to ensure

a balanced evaluation across all objects.

2For F-score, we always report the subsampled version.



5.3. Baselines

We compare PointInfinity with two SOTA models, Multi-

view Compressive Coding (MCC) [51] and Point-E [36].

MCC [51] studies the problem of RGB-D conditioned

shape reconstruction and learns implicit reconstruction with

regression losses. MCC and our model use the same RGB-

D encoder and both use CO3D-v2 as training set. One main

difference between MCC and our model is that MCC uses

a deterministic modeling and does not model interactions

between query points.

Point-E [36] is a point cloud diffusion model using a

vanilla transformer backbone. As the official training code

is not released, we report results based on our reimplemen-

tation. We use the same RGB-D encoder as our method for

fair comparison. The main difference between Point-E and

PointInfinity lies the architecture of the diffusion denoisers.

5.4. Main Results

Test-Time Resolution Scaling. Table 1 compares perfor-

mance of PointInfinity at different testing resolutions ntest.

As we can see, despite that the ntest ̸= ntrain, increasing

test-time resolution in fact slightly improves the generated

surface quality, as reflected on CD@1k. This verifies the

resolution invariance property of PointInfinity. We hypoth-

esize the slight improvement comes from that the read op-

erator gets to incorporate more information into the latent

representation, leading to better modeling of the underlying

surface. In §6, we will provide a more detailed analysis.

On the contrary, the performance of Point-E [36] decreases

with higher testing resolution. This is expected, as unlike

PointInfinity, the size of Point-E [36]’s latent representa-

tions changes with the resolution, affecting the behavior of

all attention operations, making it not resolution-invariant.

Generalization Analysis. Here we analyze how PointIn-

finity generalizes to different settings like different condi-

tions and backbones. Table 2 presents results on a differ-

ent condition. Specifically, we explore whether our find-

ing generalizes to the “RGB-conditioned” point generation

task. We can see that when only conditioned on RGB im-

ages, PointInfinity similarly demonstrates strong resolution

invariance. Performance evaluated on all three metrics im-

proves as test-time resolution ntest increases.

Note that our default implementation based on [19] rep-

resents only one instance of the two-stream family. The

PerceiverIO [20] architecture originally designed for fusing

different input modalities for recognition is another special

case of a two-stream transformer model. The main differ-

ence between our default architecture and PerceiverIO lies

in the number of read-write cross attention. Table 3 presents

Metric Method 1024 2048 4096 8192

CD@1k (↓)
Point-E [36] 0.239 0.213 0.215 0.232

Ours 0.227 0.197 0.186 0.181

CD@full (↓)
Point-E [36] 0.239 0.200 0.194 0.205

Ours 0.227 0.185 0.164 0.151

PSNR (↑)
Point-E [36] 13.31 13.46 13.28 12.60

Ours 13.37 13.88 14.15 14.27

Table 1. Effect of Test-Time Resolution Scaling. Here we com-

pare PointInfinity and Point-E [36] at different testing resolutions

ntest. With PointInfinity, using a higher resolution during testing

does not only lead to denser capture of the surface, it also im-

proves the surface quality, as reflected by CD@1k and PSNR. On

the contrary, Point-E, which uses a vanilla transformer backbone,

sees a performance drop at high resolution.

Resolution 1024 2048 4096 8192

CD@1k (↓) 0.405 0.372 0.352 0.343

FS (↑) 0.336 0.376 0.398 0.409

PSNR (↑) 10.94 11.39 11.63 11.75

Table 2. Generalization to the RGB condition. Here we evalu-

ate PointInfinity trained only with RGB condition at different test-

ing resolutions ntest. We observe a similar performance improving

trend with higher test-time resolutions.

Resolution 1024 2048 4096 8192

CD@1k (↓) 0.251 0.213 0.203 0.197

CD@full (↓) 0.251 0.199 0.177 0.163

PSNR (↑) 13.09 13.63 13.85 13.97

Table 3. Generalization to Different Backbone Variants. Our

two-stream transformer design include a wide range of variants,

including the PerceiverIO [20] architecture originally designed

for fusing different input modalities for recognition. We observe

a similar performance-improving property of test-time resolution

scaling with this backbone variant as well.

scaling behaviors with PerceiverIO. We can see that as ex-

pected, the performance similarly improves as the test-time

resolution increases. This verifies that our findings general-

ize to other backbones within the two-stream family.

SOTA Comparisons. We then compare PointInfinity

with other state-of-the-art methods on CO3D, including

MCC [51] and Point-E [36]. We report the result under a

test-time resolution of 16k for our method. As shown in Ta-

ble 4, our model outperforms other SOTA methods signifi-

cantly. PointInfinity achieves not only better surface gener-

ation fidelity (9% better than Point-E and 24% better than

MCC quantified by CD@1k), but also generates better tex-

ture (as shown in better PSNR).



Method CD@1k (↓) FS (↑) PSNR (↑)

MCC [51] 0.234 0.549 14.03

Point-E [36] 0.197 0.675 14.25

PointInfinity 0.179 0.724 14.31

Table 4. Comparison with Prior Works. We see that PointInfin-

ity outperforms other state-of-the-art methods significantly on all

metrics we evalute, demonstrating the effectiveness our resolution-

invariant point diffusion design.

Comparisons with Unconditional Models. Addition-

ally, we compare PointInfinity with unconditional 3D gen-

erative models in terms of resolution-invariance. Specifi-

cally, we consider Point-Voxel Diffusion (PVD) [32] and

Gradient Field (ShapeGF) [2]. These models are originally

designed for unconditional 3D shape generation (no color),

and are trained with different resolutions and data. There-

fore, we report relative metrics when comparing with them,

so that numbers between different methods are compara-

ble. The results of relative CD are shown in Tab. 5. We

observe that as resolution increases, PointInfinity’s perfor-

mance improves, while ShapeGF’s performance remains al-

most unchanged. On the other hand, PVD’s performance

significantly drops. This verifies the superior resolution-

invariance property of PointInfinity, even when compared

to models designed for different 3D generation scenarios.

Resolution 1× 2× 4× 8×

PVD [32] 1.000 3.605 4.290 4.221

GF [2] 1.000 0.999 1.000 0.999

PointInfinity 1.000 0.868 0.819 0.797

Table 5. Comparison with Unconditional Models. We see

that PointInfinity outperforms other unconditional 3D generative

methods, including PVD and ShapeGF, in terms of resolution-

invariance.

5.5. Complexity Analysis

We next analyze the computational complexity of PointIn-

finity at different test-time resolutions. The computational

analysis in this section is performed on a single NVIDIA

GeForce RTX 4090 GPU with a batch size of 1. Thanks to

the resolution-invariance property, PointInfinity can gener-

ate point clouds of different test-time resolutions ntest with-

out training multiple models. On the other hand, Point-

E [36] requires the training resolution to match with the

testing resolution, since it is resolution specific. We present

detailed benchmark results comparing the iteration time and

memory for both training and testing in Fig. 3. We can

see that the training time and memory of Point-E model

scales quadratically with test-time resolution, while our

model remains constant. Similarly at test time, Point-E

scales quadratically with input resolution, while our infer-

ence computation scales linearly, thanks to our two-stream

design.

We further compare the computational efficiency of

PointInfinity to diffusion models with implicit representa-

tions. We consider the state-of-the-art implicit model, Shap-

E [22]. For a comprehensive comparison, we run Shap-E

under different commonly used marching cubes resolutions

and show results in Fig. 4. Our results show that PointInfin-

ity is faster and more memory-efficient than Shap-E.

Overall, PointInfinity demonstrates significant advan-

tage in computational efficiency.

5.6. Ablation Study

Training Resolution. In Table 6a, we train our model us-

ing different training resolutions and report the performance

under a test-time resolution of 16k. We can see that PointIn-

finity is insensitive to training resolutions. We choose 1024

as our training resolution to align with Point-E [36].

Number of Latent Tokens. We next study the impact of

representation size (the number of tokens) used in the ‘la-

tent stream’. As shown in Table 6b, 256 or higher tends

to provide strong results, while smaller values are insuffi-

cient to model the underlying shapes accurately. We choose

256 as our default latent token number for a good balance

between performance and computational efficiency.

Comparison to A Naı̈ve Mixture Baseline. Finally, note

that a naı̈ve way to increase testing resolution without re-

training a model is to perform inference multiple times

and combine the results. We compare PointInfinity with

the naı̈ve mixture baseline (denoted ‘mixture’) in Table 6c.

Interestingly, we observe that the mixture baseline sees a

slight improvement with higher resolutions, instead of stay-

ing constant. In a more detailed analysis we found that mix-

ing multiple inference results reduces the bias and improves

the overall coverage, and thus its CD@1k and FS. Nonethe-

less, PointInfinity performs significantly better, verifying

the non-trivial modeling power gained with our design.

Also note that PointInfinity is significantly more efficient,

because all points share the same fixed-sized latent repre-

sentation and are generated in one single inference run.

5.7. Qualitative Evaluation

Here we qualitatively compare PointInfinity with other

state-of-the-art methods in Fig. 5. Compared to MCC [51],

we observe that our method generates more accurate shapes

and details, confirming the advantage of using a diffusion-

based point cloud formulation. Compared to Point-E [36],

PointInfinity is able to generate much denser (up to 131k)

points, while Point-E generates up to 4k points, which are

insufficient to offer a complete shape. When comparing

under the same resolution, we observe that PointInfinity



(a) Train Iter Time (b) Train Memory (c) Inference Iter Time (d) Inference Memory

Figure 3. PointInfinity scales favorably compared to Point-E [36] in both computation time and memory for both training and in-

ference. (a,b): Thanks to the resolution-invariant property of PointInfinity, the training iteration time and memory stays constant regardless

of the test-time resolution ntest. Point-E on the other hand requires ntrain = ntest and scales quadratically. (c,d): Our inference time and

memory scales linearly with respect to ntest with our two-stream transformer design, while Point-E scales quadratically with the vanilla

transformer design.

ntrain CD@1k(↓) FS(↑) PSNR(↑)

64 0.178 0.722 14.28

256 0.174 0.737 14.41

1024 (default) 0.179 0.724 14.31

2048 0.183 0.708 14.19

(a) Training Resolution

zinit dim CD@1k(↓) FS(↑) PSNR(↑)

64 0.457 0.262 10.90

128 0.182 0.719 14.25

256 (default) 0.179 0.724 14.31

512 0.176 0.729 14.45

(b) Number of Latent Tokens

ntest CD@1k(↓) FS(↑) PSNR(↑)

Mixture 1024 0.227 0.622 13.37

Mixture 2048 0.220 0.619 13.21

Mixture 4096 0.215 0.625 13.12

Mixture 8192 0.211 0.632 13.07

PointInfinity 8192 0.181 0.721 14.27

(c) Mixture Baseline

Table 6. Ablation Experiments on CO3D-v2. We perform ablations on the CO3D-v2 dataset [37]. Specifically, we study the impact

of training resolution (a), the size of the latent representations (b), and verify the advantage of PointInfinity over a ‘mixture’ baseline for

generating high resolution point clouds.

Figure 4. PointInfinity achieves favorable computational com-

plexity even compared with implicit methods such as Shap-

E [22]. The figures show PointInfinity is faster and more memory-

efficient than Shap-E under a high test-time resolution of 16k.

enjoys finer details and more accurate shapes than Point-

E. Furthermore, We observe that PointInfinity not only

achieves high-quality generation results in general, but the

generated surface improves as the resolution increases.

6. Analysis

6.1. Mechanism of Test­time Resolution Scaling

In §5.4, we observe that test-time resolution scaling with

PointInfinity improves the reconstruction quality. In this

section, we provide a set of analysis to provide further in-

sights into this property.

Recall that during diffusion inference, the model input

is a linear combination of the Gaussian noise and the out-

Metric Method 1024 2048 4096 8192

CD@1k (↓)
Restricted Read 0.227 0.225 0.220 0.224

Default 0.227 0.197 0.186 0.181

CD@full (↓)
Restricted Read 0.227 0.211 0.196 0.190

Default 0.227 0.185 0.164 0.151

PSNR (↑)
Restricted Read 13.37 13.39 13.50 13.49

Default 13.37 13.88 14.15 14.27

Table 7. Analysis of the Resolution Scaling Mechanism. To ver-

ify our hypothesis discussed in §6, we compare our default imple-

mentation to a “Restricted Read” baseline, where the information

intake is limited to 1024 tokens, at different test-time resolutions.

We see that the performance no longer monotonically improves

with resolution, supporting our hypothesis.

put from the previous sampling step. Our hypothesis is that,

increasing the resolution results in a more consistent gen-

eration process, because more information are carried out

between denoising steps. With a higher number of input to-

kens, the denoiser obtains strictly more information on pre-

viously denoised results xt, and thus xt−1 will follow the

pattern in xt better.

To verify this hypothesis, we consider a variant of our

model, where the read module only reads from a fixed set of

ntrain input tokens. All other ntest−ntrain tokens’ attention

weights are set as zero. The remaining parts of the model

are kept unchanged. As shown in Table 7, after this mod-

ification, CD@1k of the model does not improve with res-

olution anymore. Rather, it remains almost constant. This
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Figure 5. Qualitative Evaluation on the CO3D-v2 Dataset [37]. The point clouds generated by our model (column d,e,f) represent denser

and more faithful surfaces as resolution increases. On the contrary, Point-E (column a, b) does not capture fine details. In addition, we

see that PointInfinity obtains more accurate reconstructions from the 131k-resolution point clouds (column f) compared to MCC’s surface

reconstructions (column c).

result supports that the high information intake indeed leads

to performance improvement.

6.2. Variability Analysis

Based on our hypothesis, a potential side effect is a reduced

variability, due to the stronger condition among the denois-

ing steps. To verify this, we evaluate the variability of our

sampled point clouds. Specifically, for every example in

the evaluation set, we randomly generate 3 different point

clouds and calculate the average of the pair-wise CD among

them, as a measure of the variability. In Fig. 6, we see

that when the resolution increases, the variability indeed re-

duces, supporting our hypothesis.

6.3. Comparison to Classifier­Free Guidance

The fidelity-variability trade-off observed in resolution scal-

ing is reminiscent of the fidelity-variability trade-off often

observed with classifier-free guidance [14]. We compare

these two in Fig. 6. As we can see, when the guidance

scale is small, classifier-free guidance indeed improves the

fidelity at the cost of variability. However, when the guid-

ance scale gets large, further increasing the guidance hurts

the fidelity. On the contrary, our resolution scaling consis-

tently improves the sample fidelity, even at very high reso-

lution. Moreover, the trade-off achieved by PointInfinity is

always superior to the trade-off of classifier-free guidance.

7. Conclusions

We present PointInfinity, a resolution-invariant point diffu-
sion model that efficiently generates high-resolution point

Figure 6. Fidelity and Variability Analysis. We observe that

as the resolution increases, the variability of the generated point

clouds reduces, due to the stronger condition among the denoising

steps. Also note that our test-time resolution scaling achieves a

better fidelity-variability trade-off than classifier-free guidance.

clouds (up to 131k points) with state-of-the-art quality. This
is achieved by a two-stream design, where we decouple
the latent representation for modeling the underlying shape
and the point cloud representation that is variable in size.
Interestingly, we observe that the surface quality in fact im-
proves as the resolution increases. We thoroughly analyze
this phenomenon and provide insights into the underlying
mechanism. We hope our method and results are useful for
future research towards scalable 3D point cloud generation.
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